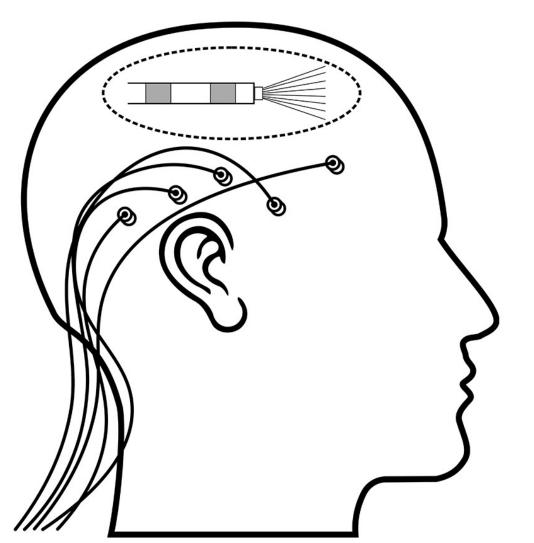
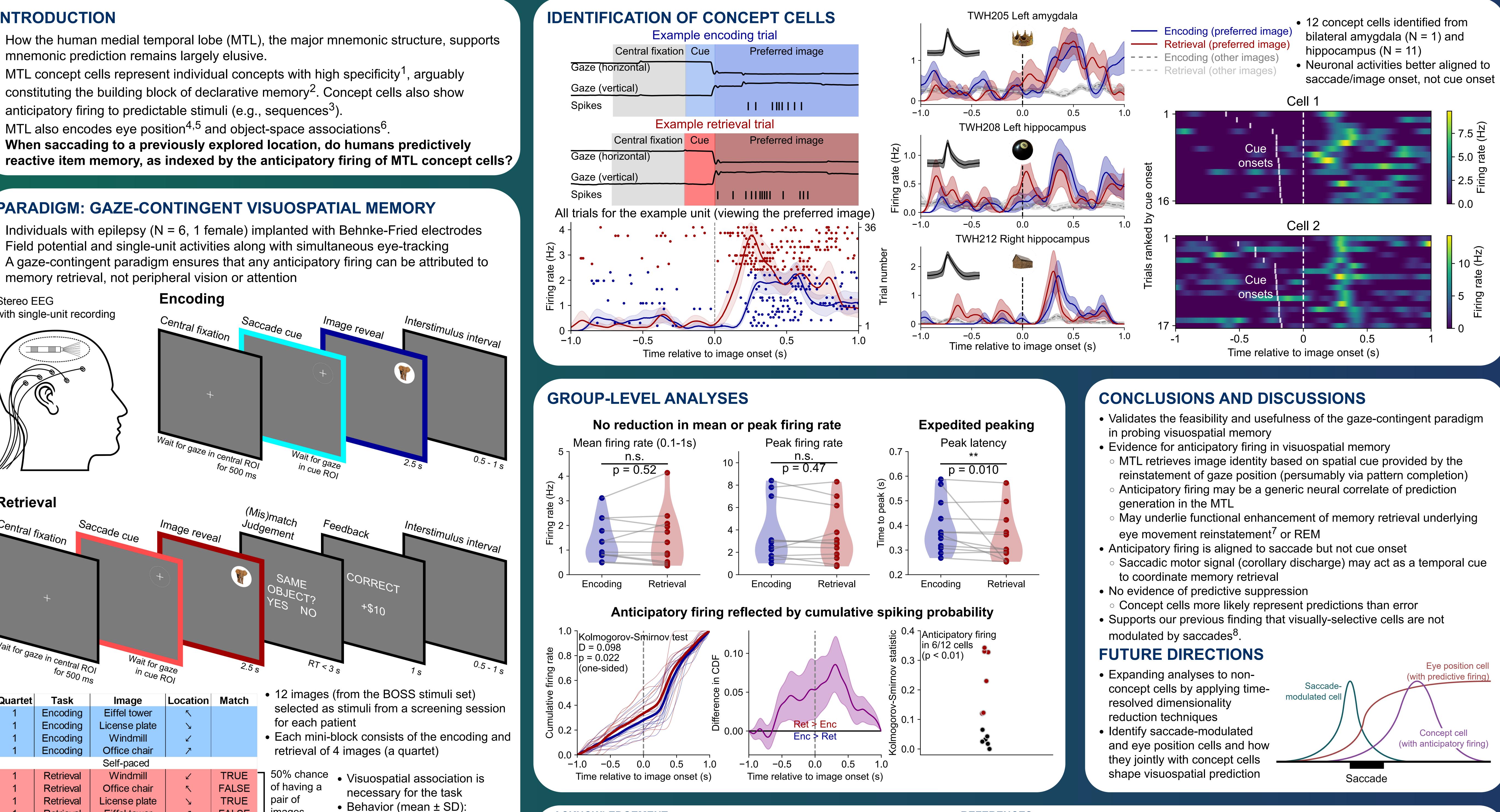


Neuronal mechanisms of saccade-coordinated visuospatial memory recollection in the human brain

Qian Chu^{1,2,3,4}, Thomas M. Biba^{2,3}, Ivan Skelin², Suneil K. Kalia^{1,2,3}, Taufik A. Valiante^{1,2,3,#}, Lucia Melloni^{1,4,5,#}

¹Max Planck - University of Toronto Centre for Neural Science and Technology ²Krembil Brain Institute & KITE Research Institute & CRANIA, University Health Network ³University of Toronto ⁴Max Planck Institute for Empirical Aesthetics ⁵New York University Grossman School of Medicine [#]Senior authors


INTRODUCTION


- How the human medial temporal lobe (MTL), the major mnemonic structure, supports mnemonic prediction remains largely elusive.
- MTL concept cells represent individual concepts with high specificity¹, arguably constituting the building block of declarative memory². Concept cells also show anticipatory firing to predictable stimuli (e.g., sequences³).
- MTL also encodes eye position^{4,5} and object-space associations⁶.
- When saccading to a previously explored location, do humans predictively

PARADIGM: GAZE-CONTINGENT VISUOSPATIAL MEMORY

- Individuals with epilepsy (N = 6, 1 female) implanted with Behnke-Fried electrodes
- Field potential and single-unit activities along with simultaneous eye-tracking
- A gaze-contingent paradigm ensures that any anticipatory firing can be attributed to memory retrieval, not peripheral vision or attention

Stereo EEG with single-unit recording

Retrieval Central fixation Saccade cue image reveal Wait for gaze in central ROI Wait for gaze in cue ROI Task Quartet Image Encoding Eiffel tower Encoding License plate Encoding Windmill Office chair Encoding

		Self-paced				
1 1 1 1	Retrieval Retrieval Retrieval Retrieval	Windmill Office chair License plate Eiffel tower		TRUE FALSE TRUE FALSE	50% chance of having a pair of images	 Visuospatial association is necessary for the task Behavior (mean ± SD): Accuracy = 89 ± 5%, RT = 0.84 ± 0.34 sec
2	Encoding	Self-paced Gavel	7		swapped	

.....

ACKNOWLEDGEMENT

Funding: SGS Conference Grant, University of Toronto; Max Planck - University of Toronto Centre for Neural Science and Technology; Mitacs; Canada Foundation for Innovation; National Institutes of Health; Brain Canada Foundation; New Frontiers in Research Fund. Advising and assistance: José Zariffa, Marcel Bausch, Jiyun Shin, Alex Lepauvre, Faranak Heidari, Vandana Prasad, André Cornejo-Marin

REFERENCES

- 1. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Nature 435, 1102–1107 (2005).
- 2. Quiroga, R.Q. Nat. Rev. Neurosci. 13, 587–597 (2012).
- 3. Reddy, L. et al. *Nat. Commun.* **6**, 8556 (2015).

- 4. Mao, D. et al. *Neuron* **109**, 3521-3534.e6 (2021). 5. Killian, N.J., Jutras, M.J. & Buffalo, E.A. Nature **491**, 761–764 (2012). 6. Kunz, L. et al. Nat. Neurosci. 27, 587–599 (2024).
- 7. Wynn, J.S., Shen, K. & Ryan, J.D. Vision 3, 21 (2019). 8. Katz, C.N. et al. *Curr. Biol.* **32**, 3082-3094.e4 (2022).